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ABSTRACT

The computation of firing tables for guided missiles is a problem

that first arose when the U.S. Army introduced the Redstone Missile

into its arsenal of weapons. The repetitive nature of such computations,

their continuing requirement, and the turnover in personnel create a need

for systemization of computations, applicable for different missile systems

and at the same time, not requiring extensive analysis, new computer

programs, and training of personnel. Recent work done by the Computing

Laboratory of BRL accomplishes this objective and is a significant

improvement in the state of the art. This report describes the procedure

and includes a realistic example of a typical computational problem.
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LIST OF SYMBOLS

Term Definition

A Altitude of launcher

A a Aiming azimuth

A t Target azimuth

D Deflection of the missile from the aiming direction
-4

g Gravity vector

F Vector representing the sum of propulsive, aerodynamic
and gravitational forces

g 4 5  Magnitude of gravity at 450 latitude

H Height of target above launcher

L Latitude of launcher

R Range between launcher and target

T Time presetting

V Presetting governing the attained range

V (R, H, A) Symbolism used to denote a function of the three

variables R, H and A

Vl Symbolic variable used in multiple regression
-4 -4 --

x 1 , x 2 , X3 Triad of unit vectors specifying a non-inertial coordinate

system fixed on the Earth's surface at the launch point

k 1 , X 2 , X 3 Velocity components in X1 , X2 , X3 direction
0* a* 004 _+

X1 , 2 X 3 Acceleration components in xj, x2 , direction

6 R Range perturbation

&A Target azimuth minus aiming azimuth (A t- Aa)

c Dummy variable used in climatalogy
-4

w Earth's angular velocity vector

w Magnitude of W
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INTRODUCTION

The computation of firing tables for guided missiles is a problem

that first arose when the U.S. Army introduced the Redstone missile

into its arsenal of weapons. The method of solution adopted for the

Redstone became a model for the solution of similar problems on the

Jupiter and Pershing missiles. This work, which was done at the Army

Ballistic Missile Agency and at the U. S. Army Ballistic Research

Laboratories, is documented in References 1 through 5*.

Primary responsibility for the computation of firing tables for

guided missiles lies with the Commanding General of the Army Missile

Command or with U. S. Army Materiel Command Project Managers.

This responsibility is specified in AMC Regulation No. 310-9 dated

29 April 1963. This regulation allows the Army Missile Command to

request the assistance of the Ballistic Research Laboratories or to

include in the development contracts with industry, provisions for firing

table computations. Because of artillery doctrinal procedures and the

experience of government agencies as cited above, industry (when it has

been involved) has turned to these agencies for technical guidance in the

area of firing table computations. As a result, the existing techniques

have been utilized by industry as well as by government agencies and is

considered to be the state of the art.

The repetitive nature of such computations, their continuing require-

ment, and the turnover in personnel create a need for systemization of

computations, (applicable for different missile systems and at the same

time not requiring extensive analysis ),new computer programs, and

training of personnel.

References may be found on page 49.
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Recent work done by the Computing Laboratory of BRL accomplishes

this objective and is a significant improvement in the state of the art.

The technique which has been devised, after its mechanization, makes

the problem routine. The procedure has been used successfully in the

development phase of a major U. S. Army guided missile system, and

test exercises indicate that it will be applicable to guided missile systems

in general.

The essential difference between the procedure to be described and

that used previously is the use of stepwise multiple regression. The

mathematical basis for the technique is an algorithm due originally to
6*

M. A. Efroyson . To fully understand the implementation of the

computations described herein, the reader is referred to a report by the

author and others

*Superscript numbers denote references which may be found on

page 49.
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NATURE OF THE PROBLEM

Despite the fact that a missile system may have "on board"

guidance, a requirement may still exist for determining, prior to launch,

the presettings required on the missile so that the missile's trajectory

will pass through a desired target point. This is apparent from an

examination of the factors which influence the missile's flight. These

factors can be divided into two categories.

1. Controllable factors

a. Physical Characteristics

b. Propulsion

c. Guidance and control electronics

d. Launch conditions

e. Fuzing

2. Uncontrollable factors

a. Atmospheric conditions (meteorology)

b. Effects of the Earth's rotation, gravitational field,

and geometry.

Presettings are defined as those factors which are purposely varied

or controlled so that a desired trajectory may be obtained. Those factors

which are uncontrollable but produce predictable results on the trajectory

lead to the concept of compensation, i. e., the presettings are adjusted to

compensate for known effects on a trajectory caused by uncontrollable

factors. Some uncontrollable factors have predictable results, but,

because of the uncertainty of the factor itself, it may not be fruitful from

an accuracy standpoint to correct for it or to consider it a variable of the

problem. Such is often the case with meteorology as will be discussed in

a later section.

The design and production objectives are to produce missiles of

statistical similarity in areas la. lb.and 1c. The degree to which

these objectives are met will be a cont-ibuting factor to the accuracy of

11



the system. The effects caused by meteorology create an additional

design objective, namely, relative insensitivity to meteorological

conditions.

The traditional presentation of presettings in tabular form for

cannon and rocket artillery is called a firing table. In recent years

gunnery procedures have, of necessity, become more sophisticated

and as a result, more complicated. This has led to the introduction

and use of field computers. Accordingly, the computational scheme

and associated equations for the computation of presettings for guided

missiles, though not necessarily utilizing the tabular presentation of

classical firing tables, nevertheless retain the nomenclature, "Firing

Tables".

Prior to and during the development and testing phase of a missile

system's history, a concentrated effort is made to develop a mathematical

model which represents the flight of the missile. This effort also includes

an attempt to verify or determine the accuracy of the analytical representa-

tions of factors la, lb.and 1c. Reasons for any significant discrep-

ancies between the mathematical model and test flights are sought and

corrected. This mathematical model assists in design, range safety, effect-

iveness studies, and system planning and is completely essential for firing

table computations. The flight tests, by practical necessity are conducted

at one or several locations. The number of such flight tests is small, usually

only that required to completely determine the soundnev- of the design and

engineering and production specifications and to collect sufficient data to

verify the validity of the mathematical model. Since the missile, when

fielded, should be capable of being fired from any point on the Earth, in

any direction, and to any range within its capability, some method is

required to predict the flight of the missile in situations different from

the conditions and locations existing during the test phase. This capa-

bility is provided by the mathematical model since it can be used

to generate trajectory data for any condition of the factors which
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influence the trajectory.

In employing his missile, the missileman is faced with the follow-

ing problem. His missile is located at some point on Earth (usually

specified by UTM coordinates) and he desires to engage a target at some

other point, again specified perhaps by UTM coordinates. He must

determine the launch conditions and presettings which, when inserted

into the missile's intelligence, will cause the missile to fly a trajectory

through the target point and burst the warhead at the appropriate time.

To assist in the solution of this problem, the missileman is given a

firing table.

FACTORS WHICH INFLUENCE FIRING TABLE DESIGN

The mathematical model described earlier usually takes the form

of a system of ordinary differential equations which govern the attitude

and motion of the center of gravity of the missile. All seven factors

which were mentioned in the previous section and which influence the

flight of the missile, are represented in the model. The solution of the

system of equations results in a theorectical trajectory.

Once the physical characteristics, propulsion, and guidance and

control electronics have been fixed or standardized in the model, these

factors are no longer variables in regard to solution of the gunnery

problem. This is true only so long as the tactical missiles have these

factors relatively unchanged from the standard. As a result, the

theoretical trajectories are influenced by the launch conditions,

meteorology, presettings, and the Earth model.

For the present, it will be assumed that the design of the missile

has been such as to negate any significant effects of meteorology. Hence

the meteorology is treated as a standard factor and accordingly is not a

variable. Because the firing table problem is essentially mathematical,

the remaining factors, launch conditions, presettings, and Earth model
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need to be represented by mathematical variables. The UTM coordinates

mentioned above, are usually transformed into geographic coordinates

by use of UTM-Geographic transformations . These computations then

yield range angle, latitude, and target azimuth.

If the launch conditions on a missile are fixed but the latitude of

launch and aiming azimuth are varied, the range and deflection of the

impact point will differ. This occurs because of the Coriolis and

centrifugal accelerations imparted to the missile due to the Earth's

rotation. In addition, the Earth's gravitational field varies signifi-

cantly with latitude due to its ellipsoidal nature. The shape -produces

additional geometrical effects. It follows that any scheme for

determining presettings would have to take into account variations

related to L, latitude of launch, and A t , target azimuth. In addition,

the presettings would be expected to vary with R, range between launcher

and target, H, height of target above the launcher, and A, altitude of

launcher.

The presettings are tne dependent variables of the firing table

problem, and the five variables (R, H, A, L, A t) are the independent

variables. The nature and total niaber of presettings vary from system

to system. In general, however, all missile systems have three

parameters which are in some way related to three basic presettings.

One of these corresponds to a setting imposed at launch that is designed

to achieve the desired range, such as quadrant elevation, engine cutoff

time, accelerometer setting, velocity, etc. For the sake of generality,

*A UTM-Geographic transformation scheme adaptable for field computers
can be found in Reference 8.

**Note that there exists a distinction between the terms "gravitation" and
'gravity". Gravitation is the mutual attraction between masses of matter.
Gravity is the vector sum of two opposing forces: Gravitation and the
centrifugal force due to the rotation of the Earth. See Reference 9.
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it will be denoted as V and could correspond to any of the above.

Warhead fuzing requirements usually create a need for a second pre-

setting, T, which is related to the time of flight or time of arrival at

the target. The third common presetting is A , the aiming azimuth.a

For the purpose of a typical firing table there arises a need for the

specification of three presettings, each a function of five variables.

These presettings, (functions in the firing table) are designated

V = V(R, H, A, L, A )

T = T (R, H, A, L,A) (1)

AA = A t -A A = A A(R, H, A, L, A)

The presentation of the formulas and any associated computations

comprises the firing table. Ideally a firing table should possess two

major characteristics, simplicity and accuracy. These two characteristics

should provide a rapid solution to the gunnery problem without requiring

complicated equipment to assist in computation. The characteristic of

simplicity is usually met by the tabular or manual firing table in that it

requires no computational aids beyond field-type hand crank calculators.

For some systems, however, the tabular or manual firing table may

require too much bulk, may not be sufficiently accurate, or may require

excessive solution time. In these instances, the Army has turned to

small field computers organic to the weapon system, as was the case in

Redstone, Jupiter, Pershing and Sergeant or, more recently, to general

purpose field computers such as FADAC.

One approach to solving the firing table problem would be to pro-

gram the mathematical model as described earlier for the field computer.

This has been done for cannon artillery systems and for the Little John

and Honest John rockets. The practicality of this procedure is influenced

by two major factors. The first of these'is related to the degree of complexity

15



of the mathematical model and possible simplifications. The second

results from the fact that the independent variables of a trajectory do not

correspond to the independent variables of the firing table problem. In

the computation of a trajectory the presettings are first selected and then

a trajectory is computed. The terminal point of the trajectory corresponds

to some fictitious target. Hence, to make the mathematical model useful

in thbis application, the process of iteration must be introduced, i. e., the

presettings must be continually adjusted until the trajectory corresponds to

the desired one. Usually this woul require three or more trajectory

computations, and, since a trajectory computation consists of the

numerical integration of a system of differential equations, thousands of

mathematical operations are involved. Generally, it is desirable to keep

the solution time to less than five minutes; thus the programming of the

mathematical model on the field computer may not be practical. The

alternative is the determination of a simple collection of formulas for the

presettings, represented symbolically by Equation (1), which can be

readily evaluated on a field computer. It is toward ti~is end that this report

is directed.

DEVELOPMENT OF THE METHOD

The most obvious approach to the obtaining of formulas such as

Equation (1) is to resort to the established procedures of curve fitting.

Two general categories seem applicable, Orthogonal Functions and

Least Squares. The theory of orthogonal functions is developed for one

variable and, since the problem being considered has five, some adapta-

tion would become necessary. The most serious problem associated with

least-squares is the usual one, namely, that one has to choose the form

of the linear model beforehand and any subsequent change in the form of

the model necessitates a recomputation of coefficients. Masaitis s Doints

cut that the assumption of a model containing three terms for each variable
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and all resulting combinations of the five variables creates a model of

35 or 243 terms. Even if this model contained all the necessary terms,

the computational problem of solving the resulting normal equations for

such a large problem might be near impossible. Despite this seemingly

overwhelming difficulty, the method to be presented herein will be

essentially that, namely an attempt to choose a form of linear model

which can be fitted directly in one operation. Prior to discussing this

procedure, a brief examination of the existing technique is undertaken.

TRUNCATED FOURIER SERIES TECHNIQUE

The technique used previously has often been referred to as the

"Truncated Fourier Series Technique". The method actually employs

least-squares extensively but has acquired this name because of the use

of numerical harmonic anialysis to determine the variation of the preset-

tings with latitude and azimuth.

The technique begins with the assumption that the five variables

(R, H, A, L, At ) can be divided into two groups based on the magnitude

of their significance. These two groups are (R, L, At ) and (H, A) . In

accord with the division of the variables into these two groups arises the

concept of a sea level firing table, i. e., a firing table with (H, A) = 0,

and "corrections" to the sea level firing table to account for nonzero

values of (H, A) . The sea level formulas then take the form:

V = V (R, L, At )

T = T (R, L, At) (2)

AA = AA(R, L, At )
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For a given range, R, and latitude, L, an intuitive argument can

be made for the approximation of (V, T, AA) in a Truncated Fourier

Series in A t . It follows that for fixed R and varying L the coefficients

of the above series could be approximated by a truncated series in L.

This leads to the technique of cross fitting. To approximate periodic data

by a Fourier Series one can use the twelve ordinate method of numerical

harmonic analysis1 0 . In using this method, the data must be tabulated at

300 intervals.

At this point, the following problem has to be considered. The

dependent and independent variables in the data analysis problem do not

correspond to dependent and independent variables in the data gathering

scheme, i. e., the generation of trajectories. For example, to compute

(V, T, AA) for fixed values of (R, L, A t) requires iteration so that the

data can be tabulated for A t = 00, 300, 600, ... , 330 ° and for constant

values of R. This iteration would be required for both variables A and V.a

The computation of trajectories is usually quite expensive in regard to

computer time; hence, the procedure is forced to take a diffe- ont

path. Instead of (2), equations of the following form are sought initially.

R= R(A)
a

T = T (A) (3)
a

AA = AA (A)
a

The coefficients of the Truncated Fourier Series for functions such

as (3) are determined for various values of V and for L = 0, 30', 600,

90' . The resulting approximations, (3), are then used to retabulate the

data as functions of A The data are needed for A t = 00, 30', 600,

.. , 330 0 because of the requirements of the twelve ordinate scheme.

This is accomplished in the following fashion. In the third equation of

(3), AA = A - A . In this equation A is set to 0, 30 % .. , 330 ° and
t a t
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A is obtained by Newton iteration. The resulting values of A are thena a

inserted into the first two equations of (3) and R and T are evaluated.

The resulting data for (R, T, AA) can then be refitted as functions of At

Equations of the following form result for L = 0', 30', 60, 90' and

for various values of V:

R = R(A t )

T =T (A t ) (4)

AA= AA (A).

The coefficients of (4) are then ready to be cross-fitted in a Truncated

Fourier Series in L. Data for L = 1200, 1500, ... , 33 0 ' are obtained

by sinusoidal extrapolation. The cross-fitting is done for each value of

V. Finally, the coefficients of the truncated series in (L, A t) are

approximated by least-squares polynomials in V. One variant of the

method, as used by Masaitis on the Pershing system5 , consists of

fitting by least-squares the linear model containing the terms in (L, A )
t

found to be significant in the procedure just described. This is done

prior to cross-fitting the coefficients in terms of a series in V. In this

way, the errors occurring in the inversion of Equation (3) and those

attendant to the approximations of the twelve-ordinate method can be

eliminated, and the resulting fit has the minimum var'ance for the terms

that are in the approximation.

In a stepwise manner somewhat related to the above procedure, but

much less straightforward, the corrections to the sea-level firing table

are obtained. The end result is a collection of formulas of the type

R = R (V, L, At) + R 2 (V, L, A , H, A)

T = T1 (V, L, A) + T2 (V, L, At. H, A) (5)
t

AA = AA 1 (V, L, At) + AA2 (V, L, A , H, A)

*Physically L has meaning only in the interval, -90 < L 900 .
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In the field, the firing table problem is as follows. Given targeting f
data (R, L, A t , H, A), what values of (V, T, AA) are required to engage
the target? This implies that the first equation of (5) must be solved

by iteration. While not a very difficult computation to perform on a field

computer, this can create problems if one wants to adapt formulas such

as (5) to manual solutions.

MULTIPLE REGRESSION TECHNIQUE

The method just described, though quite ingenious, arises or is

made necessary because of shortcomings or difficulties associated with

more direct methods. The "Truncated Fourier Series Technique", as

presently used, is really an art and has consistently required the close

involvement of highly skilled individuals. Furthermore, the technique

is not too easily adaptable for guided missile systems of short range.

In these systems, the target height variable, H, and , in some instances,

even A produce greater variations in the presettings than (L, A t). As will

be shown later for these systems, the form of the variations caused by

(L, A t ) is well known, and the problem of fitting is more severe in the

other three variables.

The previously mentioned problem associated with least-squares

6was largely eliminated by a method first employed by M. A. Efroymson

Efroymson showed that the solution of the normal equations by the

Gauss-Jordan algorithm can be made equivalent to solving a series of

least-squares problems or models each differing from the prevous

problem by the inclusion of an additional term in the linear model. In

this method the advantages associated with the use of orthogonal

functions are retained, i. e., the labor associated with computing a number

of coefficients is not lost when aCiitional terms are introduced into the

approximation. The procedure is controlled by use of correleLioi theory,z

which allows the flow of computations to be so directed that the most
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significant terms of a "candidate" linear model are entered into a

"reduced" linear model which is being sought as the solution of a data

analysis problem such as the one being considered here. A general oat-

line of the computational aspects of this scheme can be found in Reference 6.

The statistical theory underlying the control asl.ects of this scheme can

be found in Reference 7 along with a general description of an existing

computer program. This program allows one to assume extremely large

linear models (100-i 50 terms) in fitting data without creating the usual

problems of inverting matrices of high order. Very large matrices are

formed in'tially, but the algorithm is controlled so as to terminate the

solution before the inclusion of insignificant terms. The progression of

the approximation can be stopped on a basis of statistical significance

tests or when a prescribed standard deviation of residuals is achieved.

The final solution normally would contain 20 to 50 terms, and in the

process of solution those matrix elements which are unique to the

smaller problem are not affected by the consideration of all the other

terms. The computational errors which would arise in solving the

complete problem (i. e., the entire candidate model) are not encountered

and the solution is identical to that which would be obtained by fitting

directly the smaller model by the conventional least-squares method.

The conventional method, however, gives no ciues as to how to define

the smaller model, a shortcoming which has necessitated the cross

fitting approach just described.

CHOICE OF LINEAR MODELS

Any attempt to write a general formula, which might include all

the terms necessary to adequately represent a collection of firing table

data, would of necessity include many terms. The total number of terms

can be made manageable by examining, in a qualitative manner, the
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factors which cause the variation of the presettings. The most fruitful

area is the examination of the effects of latitude and azimuth.

The effects of (L, A ) due to the rotation of the earth, the variation
t

of the gravitational field with latitude, and the geometrical effects

caused by the ellipsoidal nature of the earth, influence the flight of a

missile and therefore the presettings. In the simulation of theoretical

trajectories these effects are incorporated by use of mathematical models.

The form of these models differ, but all produce essentially the same

results as obviously must be the case because all forms are intended

to represent the same physical problem. The effects of the rotation

of the earth are represented in some trajectory programs by imp-rting

to the missile in inertial space and initial velocity equivalent to the

linear velocity of the launch point on the earth's surface. The position

of the earth relative to inertial space is maintained in the program, and

the position of the missile relative to the earth is determined by use of

geographical coordinates (latitude and longitude). This type of simulation

serves to represent the influence of the psuedo accelerations mentioned

previously plus any additional effects due to geometry. In this type model,

the gravitational field is usually simulated by approximations in the form

of spherical harmonic functions.

The effects of (L, A t), however, can be studied more easily by

considering the equations of motion in noninertial space, i. e., relative

to a coordinate system attached to the rotating earth. The effects being

considered affect mainly the motion of the missile's center of gravity

and, for the intended purpose, the three-degree-of-freedom equations

suffice. If a missile or projectile is represented by a point mass and

fired on a noniotating earth, its motion can be represented by the vector

differential equation.

m X = F. (6)
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X is the missile's position, m is its mass and F is the vector sum of

propulsive, aerodynamic and gravitational forces. This equation arises

from Newton's second law and holds only in inertial space. To make

Equation (6) valid for trajectories computed on a rotating earth, it is

customary to introduce into (6) the psuedo accelerations mentioned

above. The Coriolis acceleration can be represented by the vector,

(-2 W X X) and the centrifugal acceleration by the vector. W X (u) × R)

where X is the vector cross product,w is the angular velocity of the

earth, X is the missile's velocity, and R is the vector from the earth's

center to the missile. Prior to being launched, a missile is elevated

relative to a reference determined by the local direction of gravity

(the plumb bob). The gravity vector, yielding this reference, consists

of the gravitation and the local centrifugal acceleration. This consider-

ation, when ignored, produces erroneous results when the centrifugal

acceleration is introduced as W X (W X R). A downrange component

of centrifugal acceleration enters unless the coordinate system is

tilted with respect to the mathematical normal to the reference ellipsoid.

This problem is easily avoided by writing the equations of motion in the

form.

X = F/m + g -2 WX X (7)

g is defined as the gravity acceleration which includes the effects of

gravitation and centrifugal acceleration. The coordinate system has x 1

pointed in the direction of fire, xa along the plumb line and pointing

upward: and x3 completes the triad. In this coordinate system W takes

the form

W= w cos L cos A x, + W sin L x 2a (8)

-w cos L sin A x3.
a
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As shown in Reference 6 the magnitude of g can be closely approximated

by l-'I
9=g 4I (1 -ycos 2L) . (9)

After the insertion of (8) and (9) into (7) and the introduction of an

altitude dependency into g, (7), as shown in Reference 11, can be

approximated by

, F/m g45 Xl/R I

2F/n - 2g,1 X2 /R +

X3 / ~ F3/rn - g45 X:3 /R /(0 (10)

/g,15 y cos 2L X I/R - 2w0 cos L sin A lk - 2w0 sin bL s

g 4 5 y cos ZL (1 -2X 2/R) + 2w cos L sin Aa X,

+ 2w cos L cos A X3a

g 4 s cos 2L X 3/R + 2W sin LX -2w cos L cos A X 2

a

After exhibiting the equations of motion in the form (10), one can

take advantage of the theory of differential variations, as developed by

Moulton1 0 , to find the effects of (L, A t ) on range, time of flight, and

azimuth deflections. The second matrix on the right in (10) consists

of minor factors which are quite small in comparison to the total

accelerations. These differential accelerations lead to the concept of

differential corrections. Standard trajectories are defined as those

computed with the matrix of minor factors set to zero. For standard

trajectories and fixed values of the presettings, launch altitude, and

target height, the range, time of flight , and linear deflection from the

launch azimuth are denoted respectively by R o , To, Do . In the presence

of the minor factors, the theory of differential variations leads one to

expect the range, time of flight, and deflection to take the form:
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R = Ro + R, cos 2L + R2 cos L sin A
a

T = To + T, cos 2L + T2 cos L sinA (11)
a

D = Do + D, sin L + D2 cos L cos Aa

R 1 , R2, T 1 , and T 2 are small compared to R o and T o and are called

differential variations. D o is present usually for spinning missiles

and is commonly called drift. D o , D, and D2 are also small. All of

the minor factors which included X 3 and X3 were ignored because of

their relative insignificance. The first equation of (11) can be written

in the form

R = Ro +1-%uj + - a = Ro + 6R. (12)

6R is a range perturbation equal to the sum of the component range

perturbations, 6a 1 and ' 6a. Since 5R is small in compari-

son to Ro, an assumption which usually holds true in practice, and if

V. and V are the presettings corresponding to Ro and R, respectively,

the presetting V can be approximated by the equation

V +V 6R. (13)

Since the range differentiil, 6R, is caused by the minor factors,

6R 6R 00 ' = R, cos ZL

+ R2 cos L sin Aa

and

V = Vo + L- (R 1 cos 2L + R 2 cos L sin A)
a
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or (14)

V = Vo + V, cos 2L+ V 2 cos L sinAa.

If data were generated for different values of V, H and A one could

obtain a collection of formulas such as (14). The collection could then

be approximated by the formula

V = Vo(R, H, A) + V, (R, H, A) cos 2L

+ V 2 (R, H; A) cos L sin A (I5)
a

which is the same as (14) except that Vo, V, and V 2 are now to be con-

sidered as functions of (R, H, A).

A is a dependent variable of the firing table problem and is nota

available until a formula similar to (15) is evaluated for A A. A and A
t a

usually differ only slightly, and, since we are merely seeking the form

of a candidate linear model, no problem arises if A is replaced by
a

A t in (15). The quantity A A is expected to behave similarly to the

deflection D, and an equation similar to (15) can be expected for T. Hence,

one is led to a choice of linear models for the presettings which take the

following form:

V = Vo (R, H, A) + V 1 (R, H, A) cos 2L

+ V2 (R, H, A) cos L sin A (16)
t

T = To (R,H,A) + T, (R,H,A) cos 2L

+ T 2 (R, H, A) cos L sin A (17)t

AA = AAo (R,H,A) +AA, (R,H,A) sin L

+ AA 2 (R, H, A) cos L cos A (18)t

Experience indicates that the quantities Vo, V 1 , etc. can be closely

approximated by polynomials in (R, H, A). The question arises

whether the formulas (16), (17), and (18) are sufficiently general in

the variables (L, A t). In practice it turns out that, for missile

systems of short range formulas such as these are quite adequate.

At long ranges the inclusion of additional trigonometric terms in (L, At
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are required. It is recognized that in this context the words short and long

give tLie firing table planner nothing to work with and indeed, if the

formulas are inadequate, how does one proceed to determine adequate

formulas? It should be remembered that the purpose of this exercise

was merely to establish a physical reasoning to gain insight into the

formation of a candidate model. In any such problem, it is necessary

to verify the adequacy of the approximations because of the differences

that exist between missile systems. The process of verification serves

as a safety check and throws light on the validity or falsity of any

assumptions that are made.

Prior to considering the more general problem, the following

significant point should be observed. Suppose that it was known before-

hand that the only trigonometric terms that influence the presettings

are those listed in the above formulas. This would be very significant

in two areas:

(1) The size of the candidate model.

(2) The total amount of data required.

It was pointed out earlier that the formation of a model in five variables

containing three terms in each variable and considering all combinations

would result in 243 terms, The model based on formulas (16), (17)

and (18) including all terms in R, H and A through the quadratic terms

and all combinations would contain only 3 X 33 or 81 terms.

The data required to find approximations such as (16), (17) and

(18) are far less than would be required in the more general case. For

a sea level firing table the Truncated Fourier Series Technique might

require as many as 30 trajectories for each value of the presettings

as compared to as little as 3 for the technique being described. This
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creates a very strong motivation for the determination of the significant

trigonometric terms prior to making decisions on how many and what type

trajectories are to be run for firing table purposes.

No implication should be drawn from the previous discussion that

trajectories should be computed on the basis of defining standard

trajectories, or that three-degree-of-freedom kinematics should be

used in generating the trajectory data. It is assumed throughout that the

data would be generated by a six-degree -of-freedom trajectory model

when required. The discussion was conducted merely to lend insight

into the formation of candidate linear models.

DETERMINATION OF SIGNiFICANT HARMONICS

The trigonometric harmonics in (L, A t) which affect the pre-

settings significantly will be the same harmonics which affect the range,

time of flight, and deflection in a significant fashion. Furthermore,

those harmonics which have no significant affect on the missiles trajectory

at the maximum range of interest are not apt to have any effect at ranges

less than the maximum. These two statements are not rigorously true,

but, nevertheless, seem plausible from the following physical reasoning.

The trigonometric harmonics influence the equations of motion as

differential accelerations and through the fact that the geometrical

reference of the trajectory is with respect to a nonspherical Earth.

The first of these factors causes differential displacements of the

center of gravity which grows as the square of the time of flight.

The second factor produces displacements which increase with the

distance of the missile from the launch point. Hence, both factors

produce effects which increase with range.

The fact that the range can be expressed as a linear combination

of certain trigonometric terms does not guarantee that the presetting V

can be approximated by a .inear combination of the same trigonometric
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terms. This is so only if Equation (13) is sufficiently accurate to

approximate V for the largest values of 6R that are possible. It must

be recognized, howev.;r, that a problem of this type is not amenable

to rigorous analysis, and , in this situation the following precept is a

good one to follow. Establish from physical principles a plausible

argument. From the intuition so gained, define a candidate model

which seems to have a chance for success. Try it. If the results so

obtained are sufficiently accurate, the job is done. If the results are

not sufficiently accurate, re-examine the assumptions and try again.

The following type of analysis should suffice in determining the

significant harmonics. For fixed presettings corresponding to maximum

range and (H, A) = 0, one should compute trajectories for various

latitudes, e.g., 0 ° , 150, 30 ° , ... , 60 ° and at each latitude several

values of A , e.g., 00, 30', 600, ... , 330 ° . At the pole only one

data point is required. From these data one should fit functions of the

following form:

R: R(L, At)

T = T (L, At)

AA = AA(L, A)

This fitting is done quite simply by the Stepwise Multiple Regression

procedure. The regression should be terminated after a preselected

standard deviation of residuals is obtained. The reduced linear model

then indicates the significant harmonics. As a candidate model one can

choose all combinations of the sine and cosine harmonics in (L, At)

through the fifth harmonic and all possible products. An examination

of !it.ed results for previous work on Redstone, Pershing, etc. indicate

that this model should be sufficient.

Mention was made earlier with respect to developing a procedure

which would take only one step. The procedure, as outlined thus far,
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implies two steps:

(1) Determination of significant harmonic terms and
generating of trajectory data

(2) Fitting of candidate linear model.

The requirement for the first step, however, arises from consideration

of economy and is not a requirement peculiar to the fitting technique.

The importance of keeping economy under consideration in this problem

is attested to by the following case history. This case history occurred

during the preliminary planning for firing table computation on a guided

missile system for which industry had contract responsibility. Not being

experienced in this area, industry sought technical guidance from the

Government, and, after mutual agreement, a plan of attack was agreed

upon. This resulted in a "statement of intent" and included a general

outline of a procedure similar to the Truncated Fourier Series Technique

described earlier. The significant item in this plan for the sea-level

firing table was the requirement for 61 trajectories for each value of

the presettings.

These trajectories corresponded to the following values on L and A a
a

i_, A
a

0 0, 30 , 600, .. 3300

± 300 0, 300, 600, ... , 3300

±60' 0, 300, 600, .. 3300

900 1800

This large number arose as a result of suspected asymmetries in the

Northern and Southern Hemispheres. Experience since then indicates

that anywhere from 50 to 80 values of the presettings would be required

resulting in more than 3050 trajectories. The trajectories under consider-

ation required about 15 minutes running time on an IBM 7090 computer.

The total cost for just the sea level firing table would have exceeded

760 hours of IBM 7090 time. Even if funds were available, such an
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approach would not be practical because of considerations of reliability

of data generated over such a time span and the availability of a computer.

Subsequent analysis by BRL indicated that the only significant harmonics

were those discussed to this point and that only three different conditions

of (L, A ) were required to fit the data to the desired accuracy. Thea

end result is a cost comparison of 760 hours versus 40 hours or a total

difference of 95 percent. The rental on the IBM 7090 is usually greater than

$500 per hour. This serves to illustrate the requirement for a thorough

analysis of the required harmonic terms prior to generating very expensive

data. This analysis provides very useful information in helping to choose

a candidate linear model which can be fitted in one operation.

Some missile systems have guidance and control electronics which

may be influenced directly by such things as the local magnitude of

gravity. For example, a fixed value of a presetting inserted into the

missile at different latitudes may produce different effective results on

the hardware which vary with latitude and altitude. When this occurs,

it is desirable, if possible, to redefine an intermediate variable which

does not have this dependence. This intermediate variable replaces the

basic presetting in the fitted approximations. The actual presetting is

then ccmputed as a function of the intermediate variable and a known

dependence on the appropriate variables such as latitude and altitude.

This type of procedure serves to keep the fitted approximations to the

simplest possible form.

SAMPLE PROBLEM

The sample problem presented below is a very realistic one. The

mathematical model used to generate this data does not correspond to

any missile either in use or in the planning stage but nevertheless, the

data generated from this model have realistic variations in the presettings

as a function of the five variables (R, H, A, L, A t ). The computations
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are performed with respect to an inertial coordinate system at the

Earth's center, the Earth is assumed to be the standard geoid of

revolution, and the gravitational field is represented by the standard

spherical harmonic functions. The range coverage is approximately

50 to 150 km. The data is too voluminous to tabulate here but is

described in the table shown below.

DATA FOR STEP 1

(DETERMINATION OF SIGNIFICANT HARMONICS)

L 00, 150, 300, 450, 600, 750, A = 0 , 30 ', 600, ... , 330'
a

L ±90', A = 1800a

V = 1200, H = 0, A = 0

The data for the Southern Hemisphere are not really required but

were included for the purpose of illustration. The stepwise multiple

regression was performed on data for both Hemispheres and then for

the Northern Hemisphere only. After the reduced model was obtained,

it was refitted using five and then three data points. The results, as

shown below, were comparable.

HARMONIC FITS
Rms. Error

(1) R = 147831.16 + 413. 39297 cos 2L

+ 868. 62314 cos L sin A 4.0 M
t

(2) R = 147831.86 + 412.99783 cos 2L

+ 868. 99637 cos L sin A 4.3 M
t

(3) R = 147830.96 + 414. 14966 cos 2L

+ 866. 23731 cos L sin A
t

I) A = . >Z 4 An q- ---- Q e -2L

+ 879. 45828 cos L sin A
t

32



HARMONIC FITS Rms Error

(1) T = 197. 39104 + .55285215 cos 2L

+ 2. 2659327 cos L sin At .0084 sec

(2) T = 197. 38903 + .55420584 cos 2L

+ 2. 2668419 cos L sin At  00064 sec

(3) T = 197. 38597 + .55773893 cos 2L

+ 2. 2699079 cos L sin At

(4) T = 197. 37738 + .54257590 cos 2L

+ 2. 2969614 cos L sin At

(1) (A t -A a ) -3.4244540 + 14.495272 sin L

-5.84783554 cos L cos A .03 Mils
t

(2) (A t - Aa) -3.4135851 + 14.48139 5 sin L

-5.8479165 cos L cos A .04 Mils
t

(3) 1A - Aa) =-3.4227257 + 14.504357 sin L
t a

-5.8482707 cos L cos A
t

(4) (At - Aa) =-3. 437031.4 + 14.462231 sin L
t a

-5.7664911 cos L cos At

Code (1) - Both Hemispheres, (2) - Northern Hemisphere,

(3) - 5 Data Points, (4) - 3 Data Points

5 Data Points- (L, A ) = (00, 0°), (0 ° , 900) (450, 00) (450, 900),
a

(90 ° , 1800)

3 Data Points - (L, A) = (0', 90'), (45, 0'), (90', 180')
a
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DATA FOR STEP 2

(Fitting of Presettings)

V = 650, 700, 750, ... , 1200 meters/sec

A = 0, 1000, 2000, 3000 meters

H = 0, 1000, 2000, 3000, 4000, 5000 meters

(L, A ) = (0', 0°), (00, 900), (450, 00), (450, 900), (900, 1800)a

CANDIDATE LINEAR MODEL

The candidate linear models for the sample problem were chosen

after the results of Step 1 were obtained. The significant harmonic

terms as indicated by the stepwise regression procedare were

(cos 2L, cos L sin A ) for range and time and (sin L, cos L cos At)
t t

for (At - Aa). These were the same terms that were predicted to be

significant from the analysis of the effects of (L, A t ) on the three-

degree-of-freedom equations. The fitting error, as noted above, was

found to be small enough so that the inclusion of higher harmonic terms

was not required for the range interval and data being considered. It

should be pointed out that higher harmonic terms are to be expected as

the range increases. This is evidenced by their presence in the

corresponding work on Redstone and Pershing. This is of no consequence,

however, in relation to the flexibility or generality of the procedure

being described since the regression would have identified the appropriate

higher harmonics in the order of their significance. An example with

higher harmonic terms for data taken from Reference 2 is included in

a later section.

The candidate linear model chosen for this example was limited to

including less than one hundred terms because of a limitation in the

program described in Reference 7. Such a limitation is made necessary

because of memory storage capacity. This program, however, could be
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altered so that candidate models of 150 terms could be used if a require-

ment existed. The model is written in a form designed for the program

and is listed exactly as input to the program. To understand the form

of the model, the following rules are observed. The original data are

assumed to be arranged sequentially on each line of input as VI, V2, V3,

The Vi's are symbolic variables accepted by the program to

identify the data corresponding to the linear model. Any Vi can be fit

as a linear combination of other Vi's or functions of other Vi's. The

Ri variables, i = 1, 2, 3, . .. , are called redefinition variables and

serve to transform the original data. Transformations are required to

guarantee that no intermediate numbers are generated of a magnitude which

might exceed the machine capacity and to obtain computational accuracy.

Furthermore, the field computers such as FADAC may have limitations

on the allowable size of the coefficients themselves, and, hence,

transformations serve to maintain small powers in the numbers. An

effective technique is to transform the data by a linear transformation

so that the spread of the data is transformed to the interval -1 to +1.

Such a transformation is represented by the equation.

Ri = [2Vi - (Vi max + Vi min) I/ (V. max - V. min),
1 1

where Vi may. is the l.argest value of the Vi variable and Vi min the

smallest -value. The redefinitions can also be used to form initially

the powers of the polynomial components of the model. This serves

to minimize the computations related to forming the matrix elements

an-7 also simplifies the writing of the model. The data for this example,

as related to the Vi symbolism, are

Vi = R (meters)

V2 = (A - A ) (mils)

V3 = V
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V4 = H (meters)

V5 = A (meters)

V6 = L (deg)

V7 = A (mils).a

The variables V1, V2, V3, V4, and V5 are normalized to the interval

(-1, 1), V6 is converted to mils by the formula R6 = 160* V6/9, and

the quantity At is obtained by adding V2 and V7. In addition, the

powers of R, H, and A are formed. The following symbols are used.

* Multiplication

** Exponentiation

+ Addition

- Subtraction

/ Division

S ( ) Sine of enclosed argument

C( ) Cosine of enclosed argument

The reasoning used in the formation of the candidate model for V

is the following. The model is to take the general form of Equation (16).

From experience and from observation of the data, it is known that the

largest variation of V will be in the contribution of Vo. Hence, with a

limitation of 100 terms, it is judicious to allot more terms to V o than

to V1 or V2 . The largest variation of Vo, V1 , and V 2 will be due to

their dependence on R, and, hence, it is judicious to be generous in

putting relatively more terms with R than with (H, A). Furthermore,

it is suspected that H will be more significant than A. Within this

general qualitative picture, any number of plausible candidate models

could be chosen. The one listed in the sample problem arose out of the

author's experience and is in no way put forth as the wisest choice. The

power of the procedure lies in the fact that, with a minimum of intuition,

one can usually find a good candidate either by choosing a very large
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model or by experimentation.

The input and output of the sample problem are listed on pages 38

through 41. The actual model for R3 which is the normalized V, begins

with the statement, R3 = R21 + ... Each term between the + signs

is assumed to have a regression coefficient attached. Only the models

and results for V and (A - A ) are listed. The candidate model for T

was identical to V, and the results were comparable. The output

solution model lists the sequence of terms as they are added to the

regression and the corresponding progression of the standard deviation

of residuals (CURR. ERMS). The actual solution consists of the various

transformations followed by the listing of all the terms that were finally

included in the regression and the corresponding coefficients. The

regression was terminated when the standard deviation of residuals of

V was less than .045 meters per second and of (A t - A a) lss than .07t a

mils. See BRL Report No. 1330 for a more detailed listing of input-

output. The accuracy of the fits was checked by randomly generating

20 fire problems. The fits were evaluated, and this resulted in a

collection of presettings. Theoretical trajectories were computed

corresponding to these values of the presettings. The resulting data

provided an estimate of the error of the fits. The 1cr range err'or was

13 meters and the 1cr cross track deflection error was 8 meters, both

very acceptable magnitudes.
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CANDIDATE LINE~AR MODEL
VELOCITY

AH=I2
NO RESICUALS
STOP LRMS=.O45
R11(2*vl-190000)/110000,R3=(V3-925)/225,R4=(V4-2500)/2500,
R5(V5OO5)/15O,6=6*V69,R7=(V2+V)i~l=C(R6)R12=C(2*R6),

R31=RtR32=R3l**2,R33=R3l*R32,R34=R32**2,
R41=R ,Rt42=1141*2,
R3=R-.+R22i-R23+R24+R254R26
+R31+RN31*R21+R31*R22+R31*R234R31*R24+R31*R25+R31*R26
+ R 32 + 32 * 21+ R 32 * .e 2 + 32 23 +R 32 * R24 +R 32 *R 25 +R 32* R26
+R13+k33*R~21+R33*R22+1133*R23+R33*R24+R33*R25+R33*R26
+R34+R34*R2 1+R34*1R22i-R34*R23+Rt34*R24+R34*R25+R34*R26

R41+ 4l*R21+R41*R(22t I41*R23+R41]*R24
+R42+R42*R2+R42*i(22+42*R23+R42*R24
+RlRlR1R1R114* 1*2+4*~*2+4*3*2
+14* 1R2R1R1i4* 1R214*3*2+4*3*2
+R4 1*, 32+R41*R32*.k2+41*32*K22+R41*R32*R23+R41*R32*R24
+R42*i 32-i-i42*R3,2*R21 +R42*R32*R22+R42*R32*R23+R42*R32*R24
+R12+iQ 1*RU2+R22*R12+R'23*R12+R24*Rl2
'+Rl6+ 2 1*R16+iR22*Rl6+R23*R16+R24*Rl6
+R3L*Ri2+R31*R21*'U12+R31#R 22*R(12+R31*R23*R12
+R31*iR16+R31*R21*R<16+R,31*R22*R16+R31*R23*Rl6
+R32*t,12+,'(32*R21*Rl2-R(32*R22* 12
+R32*R 16+R32*R2 1*1 16+:t32*R22*.k16
+R41*I(12+R41*R21*t{12+R41*31*R12+k4l*R3l*R2l*R12
+R41*RI6+R41*R21*RL6+R 41*R31*R16+R.41*R31*fZ21*Rl6%

rAu A-AA VELOCITY HrIGHT ALTITUDE LATITUDE AIM AZ
MFTLRS MILS MLTERS/SEC OF [ARGET OF LNCHR DEGREES MILS

144876.022- 3.3702 1200.0000 5000.0000 .0000 .0000 1600.OOOOFTTST1OIOL
1~?~.8- 3.011200.0O00u 4000.0000 .0000 .0000 1600.OOOOFTTST10101

146612.149- 3.4057 1200.0000 3000.0000 .0000 .0000 1600.00O0FTTST1O1O1
14746-..33- 3.4230 1200.0000 2000.0000 .0000 .0000 1600.0000FTTST101
148294.089- 3.4400 1200.0000 1000.0000 .0000 .0000 1600.OOOOFTTST1OI1
149111.641- 3.4567 1200.0000 .0000 .0000 .0000 1600.0OOFTTST1OI0
132674t.819- 3.2533 1150.0000 5000.0000 .0000 .0000 1600.OOOOFTTST1O2O1
13355L.703- 3.2721 1150.uOOO 4000.0000 .,0000 .0000 1600.OOOOFTTST102OI
13443C.141- 3.2906 1150.OOOC 3000.0000 .0000 .0000 1600.OOOOFTTST1O2OI
135288.250- 3.3087 1150.0000 2000.0000 .0000 .0000 1b00.OOOOFTTST1O2O1
136131.894- 3.32t,6 1150.0000 1000.0000 .0000 .0000 1600.OOOOFTTST1O2O1
136959.608- 3.3440 1150.0000 .0000 .0000 .0000 1600.OOOOFITST1O2O1
121000.143- 3.14~93 1100.0000 5000.0000 .0000 .0000 1600.OOOOFTTST1O3O1
121893.220- 3.1690 1100.0000 4000.0000 .0000 .0000 1600.OOOOFTTST1O3OL
122773.562- 3.1884 1100.0000 3000.0000 .0000 .0000 1600.OOOOFTTST1O3O1
I23640."64- 3.2074 1100.0000 2000.0000 .0000 .0000 1600.OOOOFTTST1O3OI
124493.710- 3.2Z61 1100.0000 1000.0000 .0000 .0000 1600.OOOOFTTST1O3OI
12533u.953- 3.2444 1100.0000 .0000 .0000 .0000 1600.0OOOFTTST1O3O1
109844.303- 2.99~47 1050.0000 5000.0000 .0000 .0000 1600.OOOOFTTST1O4O1
110747.633- 3.0154 1050.0000 4000.0000 .0000 .0000 1600.OOOOFTTS?%10401

DATA ABSTRACT
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OUTPUT LINEAR MODEL
VELOCITY

RANGE TA-AA VELOCITY HEIGHT ALTITUDE LATUTUDE AIM AZ
METERS MILS MFTERS/SEC OF TARGET OF LNCHR DEGREES MILS
14487602 6-33702000 1 12000000 4 50000000 4 00000000 00000000 DATA
16000000 4 14575038 6-33881000 1 12000000 4 40000000 4 00000000 DATA

VW= lu VN= 7 PR. RES.> = 00000000 MAX. TERMS= 96
CON.VALUF= .95000000 STOP ERMS= 45000000-01 TOL.= .00100000
CURR.ERMS= 17266259 3 ADO TERM 1=R21
CURR.ERMS7 16231338 2 ADD TERM 2=R22
CURR.blMS = 88357901 1 AD TERM 7=R31
CURR.FRMS= 32506088 1 ADD TERM 3=R23
CURR. -RMS= 25556902 1 ADD TERM 8=R31*R21
CURR.FRMS= 18109511 1 ADD TERM 65=R12
CURR.FRMS= 12018057 1 ADD TERM 70=R16
CURR.LRMS= 82284316 ADD TERM 9=R31*R22
CURR.1RMS= 67457624 ADD TERM 4=R24
CURR.[RMS= 52590605 ADO TFRM 71=R21*R16
CURR.IRMS= 34939190 ADD TPRM 35=R41
CURR.FRMS= 29551889 ADD TERM 66=R21*RI2
CURR.FRMS= 24318115 ADD TERM 12=R31*R25
CURR.,:<MS = 18207841 ADD TERM 16=R32*R22
CURR.LRMS= 14544)96 ADD TERM 5=R25
CURR.ERMS= 11246925 ADD TERM 17=R32*R23
CURR.LiMS= 89995059-01 ADD TERM 36=R41*R21
CURR.LRMS= 77854131-01 ADD TERM 14=R32
0URR.I:RMS= 63666970-01 ADD TERM 11=R31*R24
CURR.ERtS= 50589079-01 ADO TERM 79=R31*RI6
CURR.LF'MS= 47621115-01 ADO TERM 67=R22*R12
Tl= 164C0000 I T2= 16400000 1 TA= 00000000 TR= 00000000

Rl=(2*VI-190000)/lOOOOR3=(V3-925)/225,R4=(V4-2500)/2500,
R5=(V5-1500)/1500,R6=160*V6/9,R7=(V2+V7),Rll=C(R6),RI2=C(2*R6),
R14=S(R7),R1b=R1I*R14,
R21=RlR22=R21*R21,R23=R21*R22,R24=R22**2,R25=R22*R23,R26=R23**2,
R1=R4,R32=R31**2,R33=R3 *R32,R34=R32**2,
R41=R5,R42=R41**2,
R3=1+ R21 +R22 -R 3 +R24 +R25
+R31 +R31*R21 +R31*R22 +R31*R24 +R31*R25 +R32
+R32*R22 +R32*RZ3 +R41 +R41*R21 +R12 +R21*Rl2
+R22*I<12 +R16 +R21*R16 +R31*RI6 %
LOEFFS. NO. OF INPUT LINES= 1440
21012091 12263420 I-lo859641 43141362-01-22583760-01 11779810-01
49374070-01-17126644-01 66182190-02 33098370-02-45969836-02 75864887-03
92935093-03-16740335-02 11587382-02 44623851-03-60495567-02-17932391-02
31790885-03-10469789-01-55085303-02-25963652-03 COEFFS.

NO RESICUALS 19760329-03 =ERMS 44460740-01 =RS.ERMS
SIGMAS
14920972-04 41557737-04 67368305-04 16112364-03 70018861-04 13872324-03
16(,18734-04 23775661-04 91584837-04 10083039-03 42846665-04 20021938-04
422?&655-04 32381080-04 71017640-05 11630989-04 11074577-04 12885289-04
21942937-04 13484973-04 22091823-04 17783837-04 SIGMAS

T'S
14082253 5 29509354 5-25026072 4 26775315 3-32253824 3 84915Q0 8 2
30822704 4-7e034352 3 72263261 2 32825788 2-10728918 3 37890881 2
22007069 2-51697890 2 16316203 3 38366341 2-54625622 3-13916949 3
14487981 2-77640417 3-24934702 3-14599578 2 T'S
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CANDIDATE LINEAR MODEL
TARGET AZIMUTH- AIMING AZIMUTH

AH=2
NO RESIDUALS
STOP ERMS=.07
Rl= (2*V1-190000) /l10030,R2=(V2-5)/5,R4=(V4-2500)/2500,
R5=1V5-1500)/l500,R6=160*V6/9R7=(V2+V7) ,R1O=S(R6),Rl1=C(R6),
R15=C(R7) ,Rl7=RII*R15,
R21=RlR22=R21*R21.,R23=R21*R22,R24=R22**2,R25=R22*R23,R26=R23**2,
R31=R4,R32=R31**2,R33=R31*R32, R34=R32**2,
R41=R5,R42=R41**2,
R2=R2 1+R22+R23+R24
+R31+R31*R21+R31*R22+R31*R23+R31*k24
+R32+iR32*R2 1+R32*R22+R32*R23
+ R33+R3 3 *R 21 +R 33* R22
+R41+R4~1*R21I+R4 1*R22+R41*R23
+R424-R42*R2 1+R42*R22+R42*R23
+R41*R31+R41*R31*R21.+R41*R31*R22+R41*R31*R23-l
+RIO+R21*RlO+R22*RO+{23*R1O+R24*RO+R25*RO4R26*RIO
+R31*RlO+R31*R2 I*R1O+R31*R22*RlO+R31*R23*RIO+R31*21t*R1O
+R.32*RIO+R32*R21*RIO+R32*R22*RIO+R32*R23*RlO+R32*24*RIO
+R33*RIO+R33*R21*RIO+R33*R22*RlO+R33*R23*RlO
+R34*RlO+R34*R21*RIO+R34*R22*RIO
+R41*RIO+R41*R21*R1O+R41*R22*RIO+R4 1*R23*RlO
+R42*RO+R42*R21*R1O+R42*R22*R1O+R42*R23*R1O
+Rlt*R31*RlO+R41*R31*R2 1*RIO+R41*R31*R22*RlO
+Rl7+R21*Rl7+R22*1 7+R23*RI.7+R24*Rl7+R25*Rl7+R26*R17
+R31*Rl7+R31*R2 l*R17+R31*R22*R17+R3 I*R23*Rl7+R31*24*R17
+R32*R.7+R32*R21*R17+R32*R22*Rl7+R32*R23*R17+R32*24*Rl7
+R33*R17+R33*R2 1*1 7+R33*R22*Rl7+R33*R23*R17
+R34*R17+R34*R2].*R17+R34*R22*R17
+R41*R17+R41*R21*R17+R41*R22*R17+R41*R23*Rl7
+R42*R17+R42*R21*R17+R42*R22*Rl7+R42*R23*RI 7
+R41*R31*R17+R4l*R31*R21*R17+R41*R31*R22*RI7%
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9UTPUT LINEAR MODEL
TAR(GET AZIMUTH - AIMING AZIMUTH

RANWL TA-AA VELOCITY HEIGHT ALTITUDE LArUTUOE AIM AZ
METFkS MILS METERS/SEC OF TARGET OF LNCHR DEGREES MILS
14487602 6-33702000 1 12000000 4 50000000 4 00000000 00000000 DATA
16000000 4 14575038 6-33881000 1 12000000 4 40000000 4 00000000 DATA

Vw= 16 Vi= 7 PR. RES.>= 00000000 MAX. TERMS= 96
CON.VALUE= .95000000 STOP ERMS= 70000000-01 TOL.= .00100000
CUR R.dFRMS= 555153c,5 I ADD TERM 29=t<10
CURR.'RMS= 21252112 1 ADD TgRM 64=K17
CUJRR.fRMS= 11199558 1 ADD T!-RM 30=R21*RIO
CURR.LRMS= 87502o30 ADD TFRM 1=R21
CURR.IRMS= 41916173 ADO TERM 65=R21*k7
CURR.EKMS= 24273396 ADD TrRM 17=R41
CURR.LRMS= 20180014 ADO TFRM 3=R23
CURR.FRMS= 17410327 ADo TCRM 18=R41*R21
CURR.LRMS= 14628091 ADD T:RM 5=R31
CURR.LRMS= 12000935 ADD TERM 31=R22*R10
CURR.f-RMS= 10576053 ADD TLRM 2=R22
CURR.{tRMS = 90378145-01 ADO TERM 40=iR31-24-RIO
CURR.L, MS= 86729010-'I ADD TeRM 71=R1*RI7
CURR.LRMS= 80U35330-91 REMOVE T&RM 5=R31
CURR.t-<MS= 80052135-01 ADD TERM 68=R24*R17
CURR.C,(MS= 76q 4 0395-k1 ADD TERM 37=R3I*R21*RIO
CURR.ERMS: 73396210-01 ADO TERM 20=R41*R23
CURR.,-RMS= 71624150-C1 AOU TERM 32=R23*RIO
CURR. , MS: 70405120-31 ADD TERM 34=R25*R1O
TI= 164C0000 1 72= 16400000 1 TA= 00000000 TR= 00000000

R1=(2*Vl-19COOO)/110000,R2=(V2-5)/5,R4=(V4-2500)/2500,
R5=(V5-150U)/1500,R6=i60*Vb/9,R7=(VZ+V7),IR1O=S(R6),RII=C(R6),
R15=C(K7),RIT=IRE*RI5,
R21=RI,R22=R21*R21,R23:R21*R22,R24=R22**2,R25:R22*R23,R26=R23**2,
R31=R4,R32=R3I**2,tR33=R31* R327R34=R32**2,
R41=R5,R42=R41**2,
R2=1+ R21 +R22 +R23 +R41 +R41*R21
+R41*t-Z3 +RIO +R21*RIO +R22*RIO +R23*RIO +R25*R1O
+R31*"ZI*RIO+R31*24*RlO +R17 +R21*R17 +R24*RI7 +R31*R17%
COEFF3. NO. OF INPUT LINES= 1440
-15701317 1-3025Z468 32562728-01 92417613-01-40684951-01-58910383-01
25745j88-01 22735780 1 64865455 -10246879 26206386 -19048356
1766)4C6-ul-1280D163-02-94902727 -28252271 36217711-01-26415256-01 COEFFS.

NO RESICUALS 13111114-01 =ERMS 65555570-01 =RS.ERMS
SIGMAS
10642752-02 24281148-02 21373446-02 3245z4 79 -02 47124543-03 19674411-02
27733189-02 13967718-02 50108064-02 28895955-02 15889529-01 12862190-01
13457941-02 35664941-04 10956727-02 14657639-02 27692173-02 96661329-03 SIGMAS

T'S
-14753061 4-12459241 3 15235132 2 28477828 2-86334952 2-29942641 2
92834411 1 16277376 4 12945113 3-35461292 2 16492865 2-14809574 2
1312-)347 2-35904062 2-86615949 3-19274775 3 13078681 2-27327636 2 T'S
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METEOROLOGY AND CLIMATOLOGY

It was stated earlier that a design objective in developing guided

missiles was the creation of a missile which was relatively unaffected

by variations in the meteorological conditions of the atmosphere. This

is, of course, an idealistic goal seldom, if ever, met in practice, The

reason for considering meteorology as a variable in the firing table

problem would be to increase the system accuracy. This increase in

system accuracy and implied increase in system effectiveness must be

weighed against the attendant complications that enter when meteorology

is treated as a variable. For example, the question arises as to the

requirement for an MOS (Military Occupational Specialty) pertaining to

meteorology to be included in the TOE (Table of Organization and

Equipment) for the missile battalion. The possible need for additional

communication channels between meteorology teams and the missile

battalion must also be considered.

When all these factors are considered, a possible compromise

solution might be the ignoring of day to day variations in meteorology

but the introduction of compensations for seasonal and geographical

variations. This has led to the concept of climatology as was used, for

example, on the Pershing system. In this scheme certain areas of the

globe and certain seasons are categorized into certain climatological

groupings. The firing table problem then must concern itself with the

incorporation of climatological variation in the computation of the

presettings. One solution would be to have a set of fits for each

climatological grouping. This implies that the data from the theoretical

trajectories must be computed on the basis of a theoretical atmospheric

model corresponding to the particular climatological group being studied.

Since the effects of climatology are expected to produce only small

changes on the presettings, it might be simpler to introduce corrections

to a basic set of fits to compensate for climatology. In this scheme,
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each climatological group would have a correction fit. Each missile

battalion would be given a set of rules indicating which climatological

grouping to use under certain geographical and seasonal conditions.

A simple computational scheme can be devised for computing these

corrections. The major contributing factor to climatological bias is

the density. This density bias affects the trajectory through the

retardation or drag and through the interaction effects of the guidance

and control electronics caused by the bias on the sensed accelerations.

It can be safely assumed that, if these corrections are allowed to be

functions of (R, H, A), then most of the error can be corrected. For the

computation of a correction fit, two sets of trajectories are required.

One set should be computed for standard conditions of the atmosphere.

This standard trajectory data can then be used for all ensuing work on

other climatological groupings.

In the absence of the Stepwise Multiple Regression Technique, it

would be necessary to tabulate the data for equal values of (R, H, A).

This would either require iteration of the trajectories (which, as pointed

out previously, can be quite expensive) or interpolation of the final data.

The difference in the presettings corresponding to particular values of

(R, H, A) could then be fitted in terms of polynomials in (R, H, A).

To obtain the correction fits for climatology in one operation by use

of Stepwise Multiple Regression, it is necessary to introduce a dummy

variable for climatology. This dummy variable, c , takes the value 0

for the standard trajectory data and I for the perturbed climatological

data. The candidate model for finding the correction on V would be

written as

STD + c AV = V (R, H, A) + t cAV(R, H, A).

All the components of the polynomomial model AV must be multiplied

by c . In the output model, VSTD is discarded and the significant
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components of AV are the climatological corrections. A similar

procedure can be utilized for finding correction functions for any pre-

setting which is affected by climatology.

HIGHER HARMONICS

It might be suspected that, as the range increases, the appearance

of the higher harmonic terms could be explained by an examination of the

terms previously neglected in the matrix of minor factors in Equation (10).

It usually turns out that the significant harmonic terms which appear

next are sin 2L cos A for range and time and sin 2L sin A for azimuth.
t t

These terms do not appear in the matrix. The origin of these terms could

be any or all of the following:

1. The gravitational field for an ellipsoidal earth model has a

significant vector component which varies as sin 2L. This component

is perpendicular to the geocentric line and tends to pull a missile toward

the equator. The variation with A t is a consequence of this component

having a fixed direction, hence, its resolution in the downrange direction

would be sinusoidal in A
t

2. The earth's centrifugal force.

3. A second-order interaction effect of two first order harmonic

terms.

Regardless of the origin of this term, it is clear that a linear model

including higher harmonic terms is required in order to achieve the

necessary accuracies for long range systems. The approach presented

earlier seems to be the safest and most straightforward way to identify

the significant trigonometric terms. Baker and Dinjar 2 list results for

a sample exercise with data which are approximated by the Truncated

Fourier Series Technique. The data consist of values of

(R, L, A , AA, T) for (H, A) = 0 and for constant V. Approximationsa

are obtained for R (Range angle), AA, and T in terms of (L, A,). The
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data for range angle were approximated by Stepwise Multiple Regression,

and the results are listed for comparison in the following table.

Fourier Series Multiple Regression

Coefficient Coefficient

Const 6. 04386 6.04342

cos 2L .01194 .01148

cos L sin A .11601 . 11632t

cos 3L sin A .00035 **
t

cos 2 A -.00092 **t

cos 2L cos A -. 00093 **t

sin 2L cos A -. 01286 -. 00961t

sin 2L sin 2 A -. 00023
t

cos L cos 2 A * -. 00237
t

cos 3L cos 2 A * -. 00458t

*Not included by Baker and Dinjar

* *Not present in approximation by multiple regression

An inspection of the results indicates that the coefficients for the most

significant harmonics seem to agree, but the difference is observed to

be of the same order of magnitude as the least significant harmonics.

The least significant harmonics differ not only in the coefficients but

also in the terms themselves, i. e., the form of the functions are

different. A plausible explanation for these results is the following.

The Fourier Series technique (the twelve ordinate method) requires

data at 30' intervals. If the data are tabulated for L in the Northern

Hemisphere only, an extrapolation process is required to fill in the

remaining data. Baker and Dinjar extrapolate their data on the

assumption that the data behave as one of the curves (1) sin L, (2) sin 2L,

(3) cos L, (4) cos 2L. Since the data do not actually behave as any single
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one of these functions nor, for that matter as a linear combination of all

these functions, the extrapolated data are distorted. One of the derivations

for the closed form expressions of the Fourier Series coefficients is based

on a least-squares criteria, and, hence, these approximations have pro-

perties analogous to least squares, i. e., the coefficients are a sort of

compromise. The distortion is now distributed by the mechanics of the

fitting process even to those regions of the independent variables for which

no extrapolation was done. Even if the resulting model is refitted by

least squares, the results are not expected to be the same because the

distortion of the data has created a different model than that which would

be found by Stepwise Regression analysis on the undistorted data.

This leads to the conclusion that some of the least significant harmonics,

when determined by numerical Fourier Series, add nothing to the accuracy

of the fit unless the model is refitted by least-squares. Furthermore, since

the regression analysis is done on original data only, the terms predicted

to be significant by this process should be the most reliable.

To this point, two approaches to the fitting problem have been considered.

The first approach is the obtaining of formulas of the type represented by

(1). The second approach leads to formulas of the type represented by (5).

The Stepwise Multiple Regression procedure can be used to find either

type of formula whereas previous procedures seem limited to formulas

such as (5). One reservation exists for using Stepwise Multiple Regres-

sion with formulas such as (1). As outlined, the first step of the proce-

dure would find the significant harmonics needed to approximate R when

V is fixed at its maximum value. The fact that V can be approximated

by the same linear combination of terms in (L, A t), as was required to

approximate R, is a conjecture. If, for a given missile system, this

conjecture proves false, ore has to make a decision whether the relative

value to be gained by having formulas such as (1) as compared to (5) is

worth the price of further analysis. With a limitation of 100 terms, it
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might be difficult to choose a good candidate linear model if more than

2 or 3 harmonic terms are significant. The BRL program for the BRLESC

computer can be expanded, however, and no real problem should exist

even for very long ranges. When the number of terms becomes a problem,

the following procedure should prove satisfactory. Suppose a formula of

the following type is being sought:

R = Ro (V, H, A) + R, (V, H, A) cos 2L + R2 (V, H, R) cos L sin At

+ R 3 (V, H, A) cos L cos 2 A + R4 (V, H, A) cos 3L cos 2 At t

The relative magnitudes of the terms are known and the complexity of the

component candidates for R 0 , R1, etc. should be chosen accordingly.

The components R3 and R 4 , for example, are quite small relatively and

probably can be represented as functions of R only, i. e., they have no

significant dependence on (H, A), and their dependence on R is probably

no more than quadratic. The term R 0 , is the most significant and, hence,

requires the most comprehensive model in the variables (R, H, A).

Therefore, it might be desirable as a preliminary investigation to select

data with (L, A ) constant and fit R = Ro (V, H, A). Ro might consista

of 20-30 terms at most, and thereafter the remaining allocation of terms

can be distributed among R1 , R 2 , etc. when forming the complete

candidate.

CONCLUSIONS

The procedures described in this report have been used successfully

in the preliminary computations for solving the firing table problem for

the Lance missile system. In addition, the sample problem included in

this report shows the relative ease with which this type problem can be

solved once the fitting program is available. The major advantage of the

procedure seems to bc that the manipulation of data in several stages is

not required. This tends to reduce the effort on the part of the analyst
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and avoids the possibilities of error at intermediate stages. The

discussion has been limited to guided missiles, but the procedure is

adaptable to other types of fire control problems for which data must

be compressed into compact form.

Authors Note

Since the completion of this manuscript the author has been

successful in modify'ng the algorithm for Stepwise Mu'Liple Regression

so that only half the storage of the original algorithm is now required.

This modif-cat:on now perrmits the use of candidate models containing

200 terms in the BRLESC program.

HAROLD J. BREAUX
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